
www.manaraa.com

Model-driven Web Services Development 

Roy Grønmo, David Skogan, Ida Solheim, Jon Oldevik 

SINTEF Telecom and Informatics, Forskningsveien 1, N-0314, Oslo, Norway 

{ roy.gronmo | david.skogan | ida.solheim | jon.oldevik }@sintef.no 

 

 

Abstract 

Web service technologies are becoming increasingly 
important for integrating systems and services. There is 
much activity and interest around standardization and 
usage of web service technologies. The Unified Modeling 
Language (UML) and the Model Driven Architecture 
(MDA)™ provide a framework that can be applied to 
web service development. This paper describes a model-
driven web service development process, where web 
service descriptions are imported into UML models; 
integrated into composite web services; and the new web 
service descriptions are exported. The main contributions 
of this paper are conversion rules between UML and web 
services described by Web Service Description Language 
(WSDL) documents and XML Schema. 

 

1. Introduction 

Web services are functional components, available 
over the Internet, and described in the Web Service 
Definition Language (WDSL) [4]. This paper1 
investigates the use of UML to express the contents and 
behavior of web services in a more understandable way 
than WSDL. 

UML modeling for automatic generation of CORBA 
IDL, Java code, EJB etc. has been successfully tried out 
(e.g. [10]). Model-driven approaches are also 
recommended by the MDA initiative of the OMG [2]. 
When it comes to web services, several UML enthusiasts 
have experimented with UML diagrams for automatic 
generation of WDSL service descriptions [5, 7]. This 

                                                           

1 This work has been funded by the European Union 
project IST-2001-37724, Adaptable and Composable E-
commerce and Geographic Information Services (ACE-
GIS) 
 

paper questions the WSDL-dependency of current service 
modeling approaches and investigates the usefulness of 
WSDL-independent UML models for web service 
specification. It raises the following two questions: 

(a) Are WSDL-specific UML constructs necessary to 
understand what the web service does? Or does pure 
UML provide even better understanding?  

(b) Are WSDL-specific UML constructs necessary for 
forward and/or reverse engineering of web services? Or 
can pure UML be used successfully for the same 
conversions? 

The first question is discussed in Section 2, and the 
second in Section 3. The experiences with the conversion 
rules developed and the conclusions of the paper are 
given in Sections 4 and 5. 

2. Modeling Web Services in UML 

Before starting the argumentation, we need an 
overview of the context in which UML models of web 
services seem to be useful. In model-driven development 
we use models to describe business concerns, user 
requirements, activities, information structures, 
components and component interactions of a system. 
These models govern the system development in that they 
can be transformed to program code. In the case of web 
service development the models are transformed into the 
Web Service Description Language. A number of web 
services are now available and it therefore seems natural 
to reuse existing web services and thus aim at creating 
composite web services. 

Figure 1 shows a UML activity diagram indicating the 
steps of model-driven web services development of 
composite web services. In the first step (Discover Web 
Services) the developer uses a web-browser, a registry 
client to search and discover candidate web services that 
may be used in the composite service. The output of this 
activity is a list of web service descriptions, represented 
as WSDL documents. To follow the model-driven 
philosophy the developer needs to import the necessary 
web service descriptions into UML by a reverse 
engineering transformation (Import Web Service 

© IEEE. Presented at The 2004 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE-04), Taipei, Taiwan 2004



www.manaraa.com

Descriptions). The output of this step is one or more 
UML models of the discovered web services. 

The developer then uses a UML tool to review and 
integrate the imported models to form a model of a 
composite web service (Model Composite Web Service). 
This activity consists of two sub-activities: service 
modeling and workflow modeling, which focus on the 
interface of the service and its internal processes, 
respectively. The output is a new UML model 
representing the new composite web service with its 
services and its workflow. This model can now be used to 
generate the WSDL description of the composite service 
(Export Web Service Descriptions) and to generate the 
process description of the service that can be used to 
implement the service in for example in a business 
process execution engine (Implement Composite Web 
Service) [3]. Finally the service is published in an 
appropriate registry, making it available for use (Publish 
Composite Web Service).  

Several authors have proposed WSDL-dependent 
UML profiles. Provost [5] has defined a UML profile for 
WSDL, introducing WSDL-dependent stereotypes. 
Gardner [3] takes a similar approach to workflow 
modeling (which is however outside this paper’s scope), 
introducing a UML profile for BPEL4WS and conversion 
to BPEL4WS. Kollman et al. [8] give an overview of 
state of the art in reverse engineering, in which none of 
the referred tools uses platform-independent models. The 
Hypermodel tool of Dave Carlson [9] has the ability to 
import XML Schema (part of WSDL) into UML, but the 
resulting UML model will have extensions specific to 
XML Schema. Conversely, Thöne et al. [7] present 
platform-independent service and workflow modeling, 
but have not defined the conversion rules to any target 
platform. 

A closer look into a WSDL-oriented UML profile [5] 
shows a number of UML extension mechanisms used to 
define: 
• stereotypes for the specific WSDL and XML 

Schema types such as <<wsdl:portType>>, 
<<wsdl:service>> and <<xs:complexType>>; and 

• tagged values for representing bindings, access 
URLs, etc. 

According to this profile, a web service should be 
modeled using the specified UML stereotypes and tagged 
values, resulting in a WSDL-dependent model. This 
model would contain a number of WSDL details being 
irrelevant for understanding the semantics of the service. 
Rather, there is a risk of getting lost in implementation 
details. Especially when modeling complex web services, 
a pure conceptual view is very helpful to the modeler's 
comprehension. This paper recommends using solely the 
semantics of the UML language in order to enhance the 
understanding and efficiency of service modeling. The 
major advantage of WSDL-independent UML models 
are: 
• The same model may be used as a basis for 

conversion to more than one target platform 
(WSDL, IDL, Java etc.), or to later versions of the 
same platform. 

• The high-level, graphical models are easier to 
understand as they do not have all the technical 
details of the target platform. 

The next Section gives an example of a simple web 
service modeled in WSDL-independent UML. 

3. Conversion between UML and WSDL 

Figure 2 shows a web service that is modeled 
independently of WSDL. The right-hand side of the 
figure shows the corresponding WSDL document. The 
WSDL document is simplified for clarity by leaving out a 
few elements and attributes as well as removing all the 
XML namespace information. The only non-standard 
stereotype introduced is <<BusinessService>>, which 
represents the component implementing the web service. 
Due to the limited space of this paper, it is not possible to 
go into the details of the conversion rules. However, the 
following description related to the figure should give an 
overview of the rules. The described web service is called 
"MyWebService" and realizes a web feature service 
interface [6] and a payment interface.  

Discover Web 
Services

Model Composite Web Service

Service 
modeling

Workflow 
modeling

Service 
modeling

Publish Composite 
Web Servic e

compositeWeb
Service-WS DL

WSDL

Implement Composite 
Web Servic e

Export Web Service 
Descriptions

UML

Import Web Service 
Descriptions

Workflow 
modeling

 

Figure 1: Steps of model-driven web services development 
 



www.manaraa.com

The CreditCard class with the number and expires 
attributes, corresponds to a complexType in the type 
section of the WSDL file with the same name as the 
class, and part elements with the same names as the UML 
attributes. The Payment interface with the validate 
operation corresponds to both a WSDL portType and a 
WSDL binding. The Payment portType contains one 
WSDL operation for each interface operation. For each 
portType there must be at least one WSDL binding with 
type name equal to the portType name. Furthermore, the 
binding contains one WSDL operation for each operation 
of the interface. The binding information gives the choice 
of a specific protocol such as SOAP, HTTP GET/POST. 
This information is not present in our conceptual UML 
model. 

The TransactionWFS interface provides operations 
for delivering geodata and possibly updating the geodata. 
This interface offers the operations of the OpenGIS 
consortium Web Feature Service Specification (WFS) 
[6]. TransactionWFS inherits three operations from the 
BasicWFS interface. UML interface inheritance results in 
copy-down of operations in WSDL, since WSDL does 
not support inheritance of portTypes or bindings. Class 
inheritance (not shown in the figure) is handled by XML 
Schema inheritance. This means that when reverse 
engineering from a WSDL document to UML, there will 
not be any interface inheritance. 

The class called MyWebService is stereotyped as 
<<BusinessService>> and corresponds to a WSDL 
service of the same name. It realizes two interfaces, 

TransactionWFS and Payment. The two realized 
interfaces correspond to two WSDL ports. The two 
WSDL ports have a binding attribute equal to one of the 
bindings corresponding to the UML interface. The two 
ports are placed inside the WSDL service corresponding 
to myWebService. The resulting WSDL-service 
myWebService has six operations, corresponding to the 
operations of its realized interfaces. 

4. Experiences 

The conversion rules between UML and WSDL have 
been implemented in the UML Transformation Tool 
(UMT) [10]. This has enabled testing and practical 
experience of the conversion rules.  

From UML to WSDL. Based on a simple UML 
model with a class which realizes some interface one may 
quickly come up with a WSDL document using the 
conversion rules. The transport protocol and encoding 
styles can be chosen at generation time and the protocols 
generated should follow recommendations of the Web 
Services Interoperability Organization [11]. The 
generation tool provides a good starting point and the 
resulting WSDL document can be further improved by a 
few manual insertions or corrections, e.g. by specifying 
necessary XML namespaces.  

From WSDL to UML. Several WSDL documents 
found on the internet have been reverse engineered. 
However, even if the generated UML models are simple, 

MyWebService
<<BusinessService>>

BasicWFS

getCapabilities()
describeFeatureType()
getFeature()

<<Interface>>

TransactionWFS

lockFeature()
transaction()

<<Interface>>

Payment

validate(card : CreditCard) : boolean

<<Interface>>

CreditCard

number : string
expires : date

       <types> <schema>
                    <complexType name="CreditCard">...

<element name="number" type="string"/>
<element name="expires" type="date"/>...

       </types>
       <message name="validateRequest">
               <part name="card" type="CreditCard"/></message>...
       <portType name="Payment">
                <operation name="validate">

<input message="validateRequest"/>
<output message="validateResponse"/>

        </operation></portType>
        <portType name="TransactionWFS">
                 <operation name="getCapabilities">...
                 <operation name="describeFeatureType">...
                 <operation name="getFeature">...
                 <operation name="lockFeature">...
                 <operation name="transaction">...
        <binding name="PaymentSOAPBinding" type="Payment">
           <soap:binding transport="http://schemas.xmlsoap.org/soap/http" ...>

<operation name="validate">...</binding>
        <binding name="TransactionWFSSOAPBinding" type="Payment">
                  <operation name="getCapabilities">...
                  <operation name="describeFeatureType">...
                  <operation name="getFeature">...
                 <operation name="lockFeature">...
                 <operation name="transaction">...</binding>
        <service name="myWebService">
                  <port name="Payment_Port”

    binding="PaymentSOAPBinding">
<soap:address location=” ..www.myWebService.com"/>...

                  <port name="TransactionWFS_Port”
                            binding="TransactionWFSSOAPBinding">…

Class

Copy-down Inheritance In
te

rf
ac

e
BusinessService

Interface

Realize

 

Figure 2: Conversion between a UML model and a WSDL document 



www.manaraa.com

the quality of the models is not always good. The reason 
is that many WSDL documents do not have proper 
message or port type names. Another finding is that the 
WSDL documents that are generated from Java or .NET 
oriented WSDL-tools have different naming conventions. 
One example is a WSDL document where all operations 
have exactly one input parameter which is always named 
"parameters". This parameter is then of a type consisting 
of parts representing each actual parameter. It is clear that 
the semantics of the reverse generated UML model is 
dependent on the semantics included in the WSDL 
document.  

5. Conclusions 

This paper recommends developers to model web 
services as conceptual UML models without using 
WSDL-specific constructs. Further, it presents a to-ways 
mapping between a WSDL-independent service model in 
UML and the corresponding service description in 
WSDL. On the basis of practical tests, we claim that 
WSDL-independent UML models are better for 
understanding what a web service does; and that WSDL-
independent UML models are sufficient for forward 
and/or reverse engineering of web services. The findings 
lead to the following conclusions: 

 (1) A WSDL-independent UML model of a web 
service explains that service better than a WSDL-
dependent model or pure WSDL does. This because 
WSDL-specific UML constructs obscure rather than 
clarify the content and behavior of the web service. On 
the contrary, models ignoring the WDSL-specific 
information contain fewer technical details and are 
therefore easier to understand for humans.  

(2) WSDL-independent UML models simplify building 
of web services, especially when the services are 
complex. This assertion is based on the fact that it is 
easier to integrate existing web services at the abstract 
level. The choice of protocols and bindings can be left to 
the underlying infrastructure. 

(3) Reverse engineering of WDSL specifications to 
WDSL-independent UML models works for all kinds of 
services. The nature of the transformation rules allows us 
to reverse engineer any WSDL document. However, it 
does not always provide semantic useful models, due to 
the low semantic content of some WSDL documents.  

(4) Forward engineering (code generation) of WDSL-
independent UML models into WSDL service descriptions 
works for all kinds of services. The transformation rules 
generate valid WSDL documents based on a choice of 
predefined set of transport protocols and bindings. Hence 
we can in principle produce a web service specification 
for any UML class that has operations specified. 

The recommended approach facilitates the inclusion 
of existing web services into a model-driven 

environment. It allows the developer to be more efficient 
in interpreting and reusing existing services in new 
settings.  

References 

[1] J. Oldevik and R. Grønmo, “ACE-GIS Deliverable D5.1.0 
Basic Model-driven tool support,”  2002, www.acegis.net. 

[2] OMG, 2002, "Object Management Group's Model Driven 
Architecture": www.omg.org/mda 

[3] T. Gardner, “UML Modelling of Automated Business 
Processes with a Mapping to BPEL4WS,” presented at 17th 
European Conference on Object-Oriented Programming 
(ECOOP), Darmstadt, Germany, 2003. 

[4] E. Christensen, F. Curbera, G. Meredith, and S. 
Weerawarana, 2001, "Web Services Description Language 
(WSDL) 1.1, W3C Note": www.w3.org/TR/wsdl 

[5] W. Provost, XML.com, 2003, "UML for Web Services": 
http://www.xml.com/lpt/a/ws/2003/08/05/uml.html 

[6] OGC, “Web Feature Service Implementation 
Specification Version 1.0.0,” Open GIS Consortium Inc., 
OpenGIS Implementation Specification OGC 02-058 19 
September 2002, 
http://www.opengis.org/techno/implementation.htm. 

[7] S. Thöne, R. Depke, and G. Engels, “Process-Oriented, 
Flexible Composition of Web Services with UML,” presented at 
Int. Workshop on Conceptual Modeling Approaches for e-
Business: A Web Service Perspective (eCOMO 2002), 
Tampere, Finland, 2002. 

[8] R. Kollman, P. Selonen, E. Stroulia, T. Systä, and A. 
Zundorf, “A Study on the Current State of the Art in Tool-
Supported UML-Based Static Reverse Engineering,” presented 
at Ninth Working Conference on Reverse Engineering 
(WCRE'02), Richmond, Virginia, 2002. 

[9] D. Carlson, “Hypermodel”, www.ontogenics.com. 

[10] SINTEF, “UML Model Transformation Tool”, http://umt-
qvt.sourceforge.net. 

[11] WS-I, 2003, "Web Services Interoperability 
Organization": http://www.ws-i.org/ 


